Thursday, April 08, 2021

Brain-Computer Interface, Mengendalikan Kursi Roda Hanya dengan Pikiran

Setiap dari kita pasti akan mengalami proses penuaan. Salah satu efek yang paling dirasakan karena proses penuaan adalah terjadinya penurunan fungsi tubuh, baik secara fisik maupun mental. Proses alami ini menyebabkan para manula menjadi bergantung kepada orang lain untuk melakukan aktivitas sehari-hari, termasuk fungsi motorik seperti berjalan.

Dalam hal ini, teknologi brain-computer interface (BCI) atau antarmuka otak-komputer hadir untuk membantu orang-orang yang mengalami gangguan motorik (kemampuan bergerak) atau kelumpuhan akibat proses penuaan, atau kecelakaan yang menyebabkan cedera pada sistem saraf, atau penyakit-penyakit yang berhubungan dengan saraf, misalnya stroke, cerebral palsy, amyotrophic lateral sclerosis (ALS), dan lain-lain.


Ilustrasi sistem Brain-Computer Interface (BCI). (Foto: pixabay).

Dalam tulisan ini, saya akan bercerita bagaimana teknologi BCI dapat menghubungkan otak manusia dan komputer, lalu memproses dan mengirimkan perintah-perintah dari otak tersebut ke perangkat eksternal untuk melakukan fungsi-fungsi tertentu, misalnya gerakan. 

Bagaimana Cara Mengekstrak Informasi Perintah dari Otak?

Otak adalah salah satu organ paling penting dalam tubuh kita. Ia berperan layaknya seperti “komputer” yang menjadi pusat pengendalian berbagai sistem tubuh lainnya, mulai dari ketika Anda berpikir dan memilih baju warna apa yang akan Anda pakai, sampai ketika Anda berbicara, atau menyetir mobil. Karena fungsi yang sangat vital ini, otak membutuhkan energi yang sangat besar. Hampir seperlima dari energi yang kita peroleh dari makanan digunakan oleh tubuh untuk kebutuhan otak.

Segala proses yang terjadi di dalam otak dikendalikan oleh aktivitas listrik dari sel-sel saraf (neuron). Anda bisa membaca artikel saya sebelumnya untuk mengetahui bagaimana sel-sel saraf menghasilkan listrik, pada tautan berikut:

Electromyography(EMG), Ketika Otot Rangka Manusia Menghasilkan Listrik

Pada orang-orang dengan gangguan motorik atau kelumpuhan, biasanya terjadi gangguan pada sel-sel saraf motorik yang menghubungkan otak dengan otot sebagai organ motorik. Jadi, sederhananya, perintah dalam bentuk sinyal-sinyal listrik yang dikirimkan dari otak tidak sampai ke otot. Meskipun orang tersebut misalnya ingin melangkahkan kaki, otaknya sudah berpikir untuk melakukan itu, tapi kakinya tidak dapat digerakkan.

Dalam kondisi ini, teknologi BCI dapat dimanfaatkan untuk “mengambil alih” informasi perintah dari otak tadi untuk kemudian dihubungkan dengan komputer. Informasi perintah dari otak merupakan representasi aktivitas listrik dari sel-sel saraf, sehingga dapat diekstrak dalam bentuk sinyal-sinyal listrik. 

Untuk melakukan hal ini, dikenal suatu metode yang disebut EEG (electroencephalography), yaitu suatu teknik perekaman sinyal listrik dari otak. EEG berasal dari 3 kata, yaitu electro yang berarti listrik, encephalo yang berarti hal-hal yang berhungan dengan otak, dan graphy yang berarti hal-hal yang berhubungan dengan tulisan atau bisa juga diartikan sebagai bidang keilmuan.

Berdasarkan cara mengekstrak informasi dari otak, teknologi BCI dapat dibedakan menjadi 2 kategori, yaitu non-invasif dan invasif. Pada BCI non-invasif, elektrode EEG diletakkan pada permukaan kulit kepala tanpa melukai (non-invasif). Sedangkan pada BCI invasif, elektrode EEG diletakkan langsung pada permukaan otak sehingga dokter perlu melakukan prosedur pembedahan pada kepala. BCI invasif ini dikenal juga dengan electrocorticography (ECoG) atau intracranial electroencephalography (iEEG).

Sinyal-sinyal listrik yang dideteksi oleh elektrode ini kemudian dikirimkan ke sensor dan perangkat encoder EEG. Selanjutnya, pada encoder EEG akan dilakukan proses pengolahan sinyal, antara lain, pemisahan sinyal listrik dari derau (noise), yaitu komponen sinyal pengganggu yang bukan berasal dari aktivitas otak, proses penguatan sinyal oleh amplifier, dan lain-lain. Sederhananya, encoder ini akan mengolah sinyal listrik yang dikirimkan dari elektrode sehingga benar-benar menjadi sinyal listrik otak murni yang mampu terbaca oleh perangkat lunak di komputer. Pada tahap ini, otak dan komputer sudah bisa terhubung dengan baik.

Dari Komputer ke Perangkat Eksternal (Kursi Roda)

Langkah selanjutnya adalah menghubungkan informasi perintah dari otak dalam bentuk sinyal-sinyal listrik EEG yang sudah terkumpul di komputer tadi ke perangkat eksternal, misalnya dalam hal ini kursi roda. Sebelum itu, sinyal-sinyal EEG tadi perlu diolah lebih lanjut agar bisa diterjemahkan menjadi perintah-perintah gerakan pada kursi roda.

Sinyal-sinyal EEG tadi akan diklasifikasikan (dipilah-pilah) dan diproses lebih lanjut untuk menentukan sinyal mana yang benar-benar merepresentasikan perintah motorik dari otak. Bagian otak yang bertanggung jawab untuk memberikan perintah gerak motorik adalah pada bagian motor cortex, yang berada pada bagian frontal lobe (kepala bagian depan atas).

Metode pengolahan sinyal EEG sangat beragam, mulai dari pengolahan sinyal dalam domain frekuensi maupun domain waktu. Para peneliti berusaha untuk mengembangkan algoritme-algoritme tertentu agar sistem yang dihasilkan menjadi semakin cerdas. Dalam perkembangan terakhir, sistem pengolahan datanya sudah melibatkan metode-metode machine learning yang lebih canggih. 

Selanjutnya, setelah berhasil diklasifikasikan dalam bentuk perintah motorik/gerakan, informasi dari sinyal-sinyal EEG ini akan dikirimkan ke kursi roda untuk menggerakkannya. Misalnya, gerakan maju, mundur, berbelok, menghindari rintangan, dan sebagainya. Proses pengiriman informasi dari komputer ke kursi roda ini dapat dilakukan dengan kabel maupun nirkabel. Selain itu, komputer yang bertugas mengolah dan mengklasifikasikan informasi dari sinyal-sinyal EEG tadi dalam perkembangannya sudah banyak yang disatukan langsung dengan perangkat encoder EEG-nya, sehingga perangkatnya menjadi jauh lebih kecil dan ringkas.


Ilustrasi kursi roda dengan teknologi BCI. (Diwakar Vaish, the inventor of the wheelchair during press ceremony. Jasonprost. Wikipedia).

Dengan teknologi BCI ini, penyandang disabilitas yang mengalami gangguan motorik pada kaki dan/atau tangan dapat dibantu dengan kursi roda yang digerakkan dengan perintah otak. Pasien hanya perlu duduk pada kursi roda tersebut dan berpikir/berkehendak untuk melakukan gerakan-gerakan maju, mundur, belok, dan sebagainya. Selanjutnya sistem BCI yang terintegrasi dengan kursi roda tersebut yang akan melakukan gerakan-gerakannya. Intinya, selama otak pasien masih sehat, fungsi kaki dan tangannya dapat “diambil alih”  oleh kursi roda BCI ini. 

Perkembangan Teknologi BCI

Selain untuk membantu penyandang disabilitas dengan kursi roda BCI, teknologi ini dapat pula dimanfaatkan untuk keperluan lainnya. Misalnya, evaluasi dari sinyal EEG dapat digunakan untuk penanganan cedera pada sum-sum tulang belakang atau kelainan neurologi lainnya, misalnya migrain, sakit kepala pada bagian tertentu, atau dapat pula dikembangkan sebagai neuroprosthetic. 

Dalam perkembangan lain, teknologi BCI dapat dimanfaatkan untuk pengenalan suara ucap (speech recognition) secara otomatis. Dengan teknologi ini, sistem BCI dilatih untuk mengenali sinyal otak yang representatif untuk mengenali pola suara ucap sehingga dapat membantu orang-orang dengan gangguan wicara. 

Teknologi BCI termasuk salah satu teknologi mutakhir yang perkembangannya sangat pesat. Laporan dari Frost & Sullivan menyebutkan bahwa segmen pasar BCI secara global mencapai lebih dari 1 miliar USD. Segmen ini meliputi aplikasi dalam bidang kesehatan, hiburan dan gaming, neuromarketing, dan pelestarian lingkungan. Untuk saat ini, bidang kesehatan masih menempati lebih dari 50% dari total segmen pasar BCI secara global.

Tantangan global terutama di negara-negara maju di mana komposisi penduduk usia manula yang semakin dominan menjadi salah satu pemicu perkembangan teknologi BCI untuk bidang kesehatan ini. Lagi-lagi, pemanfaatan teknologi dalam berbagai bidang harus senantiasa diiringi kesadaran penuh akan usaha untuk menyeimbangkan manfaat dan risiko negatif yang mungkin timbul. 

Pemanfaatan BCI dalam bidang kesehatan diharapkan mampu membantu lebih banyak lagi para manula dalam menjalani keseharian mereka. Karena fase kehidupan sesungguhnya berputar dalam suatu siklus. Ketika lahir kita berada dalam keadaan lemah, kemudian tumbuh semakin kuat ketika dewasa, lalu dikembalikan lagi ke keadaan lemah pada usia senja. 

Referensi

1.Belkacem, A.N., Jamil, N., Palmer, J.A., Ouhbi, S., and Chen, C. (2020): Brain Computer Interface for Improving the Quality of Life of Older Adults and Elderly Patients. Frontiers in Neuroscience, 14: 692.

2.Mahmood, M., et al. (2019): Fully Portable and Wireless Universal Brain-Machine Interfaces Enabled by Flexible Scalp Electronics and Deep Learning Algorithm. Nature Machine Intelligence, 1: 412-422.

3.Tareq, Z., Zaidan, B.B., and Suzani, M.S. (2018): A Review of Disability EEG based Wheelchair Control System: Coherent Taxonomy, Open Challenges and Recommendations. Computer Methods and Programs in Biomedicine.

4.Brain-Computer Interface Hold a Promising Future. https://aabme.asme.org/posts/brain-computer-interface-the-most-investigated-areas-in-health-care-hold-a-promising-future

 Artikel ini pertama terbit di Kumparan:

Brain-Computer Interface, Mengendalikan Kursi Roda Hanya dengan Pikiran

Ultrasonik, "Musik" Tak Terdengar untuk Mengolah Bahan Makanan

Pemanfaatan gelombang ultrasonik telah lebih dahulu dikenal dalam dunia kedokteran. Sebagaimana yang dikenal masyarakat luas, metode pencitraan medis dengan ultrasonografi (USG) telah menjadi teknik standar untuk melihat keadaan janin dalam rahim ibu. Dalam kasus ini, USG dimanfaatkan sebagai “kamera”. Anda bisa membaca artikel saya sebelumnya untuk memahami bagaimana gelombang ultrasonik bisa menghasilkan gambar pada tautan berikut:

Tapi, tahukah Anda, bahwa ultrasonik bisa dimanfaatkan tidak hanya sebagai  “kamera” saja? Gelombang bunyi yang tak mampu kita dengar ini ternyata bisa digunakan untuk mengolah bahan makanan. Dari rumah sakit, kali ini gelombang ultrasonik akan merambat hingga ke dapur dan pabrik pengolahan makanan.

Ilustrasi bahan pangan. (Keith Weller, USDA ARS, Wikipedia)

Jenis-Jenis Gelombang Ultrasonik

Gelombang ultrasonik dihasilkan ketika terjadi getaran atau vibrasi dengan frekuensi atau tingkat kekerapan yang sangat tinggi, gelombang bunyi yang melebihi ambang batas pendengaran manusia, yakni di atas 20 kiloHertz (20 ribu getaran per detik). Rentang frekuensi gelombang ultrasonik yang biasa dimanfaatkan dalam dunia kedokteran dan pengolahan bahan makanan berkisar antara 20 kiloHertz – 10 MegaHertz (10 juta getaran per detik).

Perbedaannya, jika dalam dunia kedokteran digunakan gelombang ultrasonik dengan intensitas rendah, maka untuk aplikasi pengolahan bahan makanan, digunakan gelombang dengan intensitas tinggi. Gelombang dengan intensitas yang lebih tinggi memiliki daya yang lebih tinggi pula untuk setiap satuan luas bidang yang ia lewati. Sedangkan daya adalah perubahan energi per satuan waktu, atau kemampuan untuk melakukan suatu perubahan dalam satuan waktu.

Sederhananya, gelombang ultrasonik berintensitas tinggi yang dimanfaatkan untuk mengolah bahan makanan memiliki “daya rusak” yang lebih tinggi jika dibandingkan dengan gelombang berintensitas rendah. “Daya rusak” ini yang selanjutnya dikendalikan kadarnya untuk mengolah bahan makanan, mulai dari sesederhana untuk mengiris sampai mengawetkan makanan. 

“Daya Rusak” Seperti Apa yang Dimanfaatkan untuk Mengolah Bahan Makanan?

Rentang frekuensi gelombang ultrasonik yang dimanfaatkan untuk mengolah bahan makanan setidaknya dapat dikategorikan menjadi dua jenis. Rentang pertama, rentang frekuensi rendah, yaitu sekitar 20 – 100 kiloHertz, dengan daya dan amplitudo gelombang yang besar. Pada rentang frekuensi rendah ini, gelombang ultrasonik akan menyebabkan perubahan sifat-sifat fisika-kimia (physicochemical) dan/atau struktur dari bahan makanan. Rentang ini dikenal juga sebagai power ultrasound. 

Rentang kedua, rentang menengah, yaitu berkisar antara 100 kiloHertz – 1 MegaHertz. Pada rentang frekuensi menengah ini, jika gelombang ultrasonik dikenakan pada bahan makanan, maka akan terjadi reaksi kimia dan terbentuknya radikal bebas. Karena sifat ini, maka rentang kedua ini dikenal sebagai sonochemistry (sono: bunyi, chemistry: kimia). 

Baik pada rentang frekuensi rendah dan menengah, gelombang ultrasonik akan merasuk dan merambat pada bahan yang dilaluinya (yang dalam hal ini bahan makanan) dalam bentuk gelombang sinusoidal. Anda bayangkan saja seperti gelombang tali yang diayunkan dengan salah satu ujungnya terikat, membentuk puncak dan lembah yang berulang-ulang. Rambatan gelombang ini direspons oleh molekul-molekul bahan dengan ikut bergetar secara elastis sehingga menimbulkan apa yang dinamakan efek kavitasi (cavitation). 

Pada saat terjadi efek kavitasi, pada bahan yang berupa cairan (atau mengandung cairan) akan terbentuk gelembung-gelembung udara berukuran sangat kecil (dalam ukuran mikro meter = sepersejuta meter atau nanometer = sepersemiliar meter). Jumlah gelembung-gelembung udara yang terbentuk akan bergantung kepada frekuensi, intensitas dan lamanya gelombang ultrasonik dikenakan pada bahan tersebut.

Setelah melewati titik jenuhnya, gelembung-gelembung udara ini kemudian akan pecah dengan kecepatan puluhan ribu kali per detik sehingga menghasilkan lonjakan energi, tekanan dan suhu yang sangat tinggi yang terpusat pada area tertentu pada bahan tersebut. Kondisi ini kemudian akan menimbulkan efek seperti gelombang kejut/geser (shear wave) dan terbentuknya radikal bebas. “Daya rusak” dari kedua kondisi inilah yang kemudian dimanfaatkan untuk mengolah bahan makanan. Pengolahan makanan dalam bentuk apa saja yang dapat dilakukan dengan gelombang ultrasonik?

Memotong

Pekerjaan sederhana ini akan menjadi sedikit menantang jika kita dihadapkan dengan bahan makanan dengan jumlah yang sangat banyak, misalnya di pabrik pengolahan makanan. Dalam hal ini, gelombang ultrasonik dimanfaatkan dengan merambatkan energi getaran tingginya pada mata pisau logam untuk meningkatkan kualitas dan kemampuan potongnya.

Dengan mekanisme ini, mata pisau akan bergetar dalam getaran yang sangat tinggi sehingga dapat memisahkan bahan makanan dalam potongan-potongan yang jauh lebih halus, dengan risiko keretakan/kehancuran bahan yang jauh lebih kecil. Metode ini juga sangat memudahkan untuk memotong bahan-bahan yang bersifat lengket, mudah hancur, makanan beku, atau yang bahannya cenderung tidak seragam (heterogen). 

Mengeringkan (Dehydration)

Untuk mengeringkan bahan makanan seperti buah-buahan dan sayur-sayuran, gelombang ultrasonik dimanfaatkan melalui mekanisme dehidrasi osmosis. Melalui mekanisme ini, efek kavitasi dari gelombang ultrasonik akan menyebabkan kandungan cairan pada buah/sayur “dipaksa” untuk keluar dari bahan dengan kecepatan yang sangat tinggi, sehingga proses pengeringannya menjadi jauh lebih cepat. Pada saat yang sama kandungan gula dalam buah/sayur juga dapat lebih terkonsentrasi sehingga menghasilkan kualitas bahan makanan kering yang lebih awet. 

Menyaring (Filtering)

Dalam industri pengolahan makanan yang melibatkan proses penyaringan dengan membran/selaput penyaring tertentu, penambahan gelombang ultrasonik akan mempercepat proses penyaringan dengan cara menguraikan molekul bahan makanan yang akan disaring sehingga menjadi lebih kecil.

Ekstraksi

Contoh proses ekstraksi dalam pengolahan bahan makanan misalnya ketika kita ingin memisahkan sari buah/sayur dari komponen padat atau ampasnya atau ketika kita ingin mengekstrak minyak dari biji-bijian. Dengan memanfaatkan efek kavitasi gelombang ultrasonik, proses ini dapat dipercepat dengan cara menguraikan molekul/sel tumbuhan dari bahan makanan yang diproses sehingga menjadi lebih kecil. Dengan cara ini, sari pati sayur/buah atau minyak akan lebih cepat terpisah dari ampasnya tanpa merusak kualitas nutrisi dari hasil ekstraksi. Metode ini dapat dimanfaatkan pula dalam industri obat-obatan misalnya untuk mengekstraksi antioksidan dari bahan-bahan herbal. 

Emulsifikasi

Proses emulsifikasi adalah suatu proses pemantapan emulsi atau penyatuan/pencampuran antara dua zat yang tidak dapat menyatu secara alami dengan menambahkan zat ketiga, kemudian dilakukan proses pengocokan. Dalam industri pengolahan bahan makanan, proses emulsifikasi ini banyak sekali digunakan, terutama dalam pengolahan bahan-bahan yang mengandung lemak atau minyak.

Dengan memanfaatkan efek kavitasi dari gelombang ultrasonik, bidang batas antara minyak dan air menjadi tidak stabil karena turbulensi molekul di sekitarnya, sehingga proses pencampurannya menjadi jauh lebih cepat. Selain itu, efek kavitasi juka menyebabkan penguraian molekul menjadi lebih kecil, sehingga tingkat keseragaman bahan (homogenitas) menjadi lebih baik.

Pembekuan (Freezing) dan Pencairan Makanan Beku (Thawing)

Untuk makanan beku, gelombang ultrasonik dimanfaatkan untuk meningkatkan kualitas bahan makanan dengan mengendalikan proses kristalisasi molekul cairan, misalnya pada es krim. Kebalikannya, gelombang ultrasonik dapat dimanfaatkan dalam proses pencairan bahan makanan beku (thawing) dengan cara menggetarkan molekul-molekul kristal es dengan frekuensi/tingkat kekerapan tinggi. Dengan cara ini, proses pencairan akan berlangsung jauh lebih cepat daripada hanya dibiarkan dalam suhu ruang.

Melunakkan Daging

Dengan mekanisme kavitasi dari gelombang ultrasonik, struktur protein dari daging dapat direkayasa sehingga menghasilkan daging yang lebih empuk dan lebih mudah untuk dimasak. 

Mengawetkan Makanan (Food Preserving)

Gelombang ultrasonik dapat dimanfaatkan untuk mengawetkan bahan makanan tanpa harus menggunakan bahan pengawet tambahan yang umumnya memiliki risiko kesehatan. Dengan gelombang ultrasonik, mikroorganisme dan/atau enzim-enzim tertentu yang terdapat dalam makanan dapat di-inaktivasi (di non-aktifkan perannya), sehingga proses pembusukan makanan dapat ditunda dan makanan akan menjadi lebih awet. 

Mekanisme ini kurang lebih hampir sama dengan apa yang kita lakukan ketika memanaskan makanan pada suhu tertentu. Dengan mengatur kadarnya, kita bisa memilih mikroorganisme dan/atau enzim-enzim mana saja yang ingin tetap dipertahankan, dan yang ingin dihilangkan, karena tidak semua mikroorganisme dan/atau enzim yang ada dalam bahan makanan itu merugikan. Bahkan banyak di antaranya justru sangat dibutuhkan oleh tubuh kita. 

Manfaat Lainnya

Selain dapat dimanfaatkan dalam proses pengolahan makanan, gelombang ultrasonik dapat pula dimanfaatkan untuk “mendiagnosis” bahan makanan. Dalam hal ini, yang dilakukan kurang lebih sama dengan pekerjaan dokter ketika meng-USG janin dalam rahim ibu. Perbedaannya, objeknya saja yang diganti dengan bahan makanan, misalnya sayur-sayuran atau buah-buahan.

Untuk aplikasi ini, digunakan gelombang ultrasonik dengan rentang frekuensi tinggi, yakni sekitar 1 – 10 MegaHertz, namun dengan daya yang rendah, sama seperti USG yang dimanfaatkan dalam dunia kedokteran. Pada rentang frekuensi tinggi dan daya rendah ini, gelombang ultrasonik yang digunakan tidak memiliki “daya rusak” seperti yang dimanfaatkan untuk proses pengolahan bahan makanan. 

Untuk aplikasi “diagnosis” bahan makanan ini, misalnya gelombang ultrasonik digunakan untuk mengetahui tingkat kematangan buah, mengetahui struktur, komposisi, dan tingkat keseragaman (homogenitas) bahan makanan, termasuk kandungan protein, air, atau lemak dalam bahan makanan. 



Ilustrasi Perangkat Ultrasonik dalam Industri Pengolahan Makanan. Schematic of bench (BSP-1200) and industrial (ISP-3000) scale ultrasonic liquid processors produced by Industrial Sonomechanics, LLC. (Peshkovs, Wikipedia).


Keunggulan Pemanfaatan Ultrasonik dalam Bidang Pangan

Teknologi ultrasonik terus berkembang dalam berbagai bidang, tak terkecuali dalam bidang pangan. Selain dari keunggulan-keunggulan khusus yang telah diuraikan di atas untuk setiap aplikasinya dalam bidang pangan, secara umum, teknologi ultrasonik memiliki keunggulan lain, di antaranya, relatif murah, sederhana, hemat energi, dan ramah lingkungan.

Dalam penggunaannya untuk skala yang lebih besar tentu saja pengembangan lebih lanjut dan terus-menerus tetap diperlukan untuk mengoptimalkan manfaatnya sekaligus memperkecil dampak negatif yang mungkin timbul. Tidak ada teknologi yang bisa lepas sepenuhnya dari risiko dan efek negatif, sehingga dalam memanfaatkannya, kita sebagai manusia harus tetap bijak. Karena sesungguhnya alam terkembang tempat kita belajar, bumi terhampar tempat kita menghabiskan masa tak hanya bersama sesama manusia saja, namun bersama-sama dengan makhluk hidup lainnya.

Referensi

1.Ashokkumar, M. (2015): Applications of Ultrasound in Food and Bioprocessing. Ultrasonics Sonochemistry, 25: 17-23.

2.Chemat, F., Zill-e-Huma., and Khan, M.K. (2011): Applications of Ultrasound in Food Technology: Processing, Preservation, and Extraction. Ultrasonics Sonochemistry, 18: 813-835.

3.Cheng, X., Zhang, M., Xu, B., Adhikari, B., and Sun, J. (2015): Applications of Ultrasound in Food and Bioprocessing. Ultrasonics Sonochemistry, 27: 576-585.

4.Gallo, M., Ferrara, L., and Naviglio, D. (2018): Application of Ultrasound in Food Science and Technology: A Perspective. Foods, 7: 164.

Artikel ini pertama kali terbit di Kumparan: